养殖管理频道
养殖管理  畜禽资源  免疫防疫  疫病防治  疫病警报  饲料  兽药  
当前位置:首页疫病防治病毒疾病 → 文章内容

猪瘟病毒及其致病机制研究进展


现代畜牧网 http://www.cvonet.com 2010/11/2 21:40:53 关注:573 评论: 我要投稿

新希望六和——生物环保饲料
    猪瘟早期称猪霍乱(Hog Cholera,HC),我国有人称之为烂肠瘟。欧洲称猪瘟为“古典猪瘟”,这主要是为了与非洲猪瘟区别而言[1] 。但目前为避免与乙型肝炎病毒(Hepatitis C virus,HCV )的字首缩写词HCV相混淆,用经典猪瘟病毒(Clssical swine fever virus,CSFV)代替猪瘟病毒(Hog cholera virus,HCV)。经典猪瘟(CSF)为猪的高度接触性传染病,该传染病可分为急性、亚急性、慢性、非典型性和不明显型。急性CSF由强毒株引发,一般导致高发病率和死亡率,而弱毒病毒感染则表现不明显。由于疫苗的广泛应用,有效地控制了猪瘟的大流行,减少了急性死亡。但从20世纪80年代以后,临床症状不典型且病程变长的非典型性猪瘟(或慢性猪瘟)成为该病的主要发生形式,持续感染普遍存在,疫苗的预防效果明显下降,使猪瘟防制遇到了新的困难。以目前人类对猪瘟的认识水平,尚难以从分子水平解释这一新变化的成因,这是因为对猪瘟病毒致病机理及其分子基础的认识深度不够。就此,本文综述了猪瘟及猪瘟病毒研究进展,主要涉及CSFV生物学特性、致病机制及其防控做以简单的综述,诚切希望能为防控猪瘟提供新的思路和对策。

  1 CSFV粒子结构

  CSFV粒子呈圆形,直径为40 nm~50 nm,核衣壳直径约29 nm,内部核心的直径约29 nm~30 nm具有脂蛋白膜。病毒表面有6 nm~8 nm类似穗样的突起,超薄切片中呈六角形可能具有20面对称性[1-2](图1)。

  2 CSFV生物学特性

  2.1 抗原性

  多年来人们认为CSFV为单一抗原型,然而许多学者根据血清中和试验及单克隆抗体反应发现,CSFV的抗原性呈多样性而且比较复杂。用多克隆抗体作交叉中和试验,发现CSFV毒株之间抗原差异比较很大,除有双向交叉反应外,还有单向交叉反应[3]。CSFV抗原性与具有共同抗原的牛病毒性腹泻病毒(BVDV)也存在很大差异。利用抗CSFV抗体和抗BVDV抗体做交叉中和试验,可把CSFV分为H型、B型和中间型[4](表1)。

  2.2 病原性及病理特性

  不同品种和年龄的猪对CSFV均易感,幼龄猪最为易感。CSFV主要在易感猪吞入污染物时经由口腔或咽部组织侵入宿主体内。实验感染时,病毒于接种后第3天出现在血液中,并于6 d~8 d达到最高峰。人工接种CSFV可使犊牛、绵羊、山羊或鹿发生无症状感染。家兔出现暂时性发热。

 CSFV对中胚层组织特别是造血和血管具有特殊的亲和力。这些组织发生损伤,就是淋巴结肿大和全身出血的原因。CSFV感染引起白细胞减少,血小板也减少,这是出血性变化的重要原因。因此,急性CSF突出的病理变化是小血管变性,导致肾、膀胱、皮肤和淋巴结出血和坏死。消化道内的淋巴组织坏死时伴有继发性细菌感染,成慢性猪瘟,则形成圆形隆起的纽扣样肿大[1]。

  2.3 遗传特性

  关于CSFV遗传多样性的研究,英国学者Lowing等通过分析CSFV E2糖蛋白基因的部分序列,NS5B基因和5′末端非编码区的序列,根据病毒株之间的基因序列的同源性,把猪瘟病毒分为2个群5个亚群 ,这些分型结果与单克隆抗体法和限制性内切酶图谱分析的结果一致[3]。而日本学者清水悠纪臣对分离的47株病毒的5′末端非编码区的序列进行测定,根据其同源性可把CSFV分为A,B,C 3个群,A群主要发生在日本的北部地区,包括北海道和本州的北部,B群主要发生在日本中部,而C群主要发生在南部,与中国台湾省分离的毒株同属一群[1],说明CSFV在流行病学上的分布,既有多样性,又呈现一定的分布规律。这些规律在遗传学特性、抗原性和致病性等方面表现出密切的相关性。

  3 CSFV的致病机制

  3.1 CSFV的免疫病理学

  猪一旦感染CSFV,就可引起持续高热、白细胞减少、皮肤变色、运动失调、扁桃体溃烂及黏膜损伤等。急性CSF病死率几乎为100%[3]。在猪感染CSFV的早期,CSFV抗原在基质单个或成团细胞中出现;随着被感染细胞的增多,全部基质细胞内均可检测到CSFV抗原的存在。随后,CSFV侵入皮肤的生发层(stratum germinativum),舌的中间层(stratum intermedium)、舌涎腺、扁桃体中的类RE细胞(RE-like cells)、脑中的神经元及胶质细胞、外周单核白细胞、枯否氏细胞及血管窦状隙等处[3]。晚期病猪皮肤内出血变色,粒细胞增多,神经系统症状出现,体温降至正常体温以下,最后导致死亡[4]。

  因此,人们不禁要问,为什么CSFV在短时间内侵入猪的全身脏器并导致其死亡?动物抵御外来致病因子的免疫系统为什没有能够有效地抵御CSFV的入侵?许多专家都致力于此研究,力求攻克这一世界难题。国外的Susa等指出,CSFV对猪的淋巴组织有嗜性,并可导致猪免疫系统的损伤[4]。在感染初期,CSFV就侵入猪的扁桃体及其外周淋巴结的B滤泡和上皮细胞中,并在其内复制。随后CSFV就扩展到淋巴结的其他部分、内皮及上皮细胞。原位杂交显示,作为病毒复制及侵入淋巴结位点的滤泡在晚期结构已遭到严重破坏[4]。另外,CSFV还感染并损伤淋巴组织的生发中心,阻碍B淋巴细胞的成熟,从而使在循环系统及淋巴组织中的B淋巴细胞缺失,病猪胸腺萎缩,白细胞减少,病猪的骨髓也遭到破坏[5]。因此,CSFV对免疫系统的损伤是导致急性死亡的一个重要原因。

 3.2 CSFV对体外培养细胞的影响

  CSFV在猪体内感染并破坏多种细胞,使猪迅速发病、死亡[3-4];而在体外培养细胞中,CSFV一般不使培养细胞产生病理变化(Cytopathic effect,CPE)。但细胞可带毒传代,并在细胞分裂时将病毒传至子代细胞中。CSFV在体外培养细胞中滴度低,是目前疫苗生产中一个比较难以解决的问题。

  CSFV在猪的不同组织的细胞中增殖力不同,对淋巴系统细胞有嗜性。用猪淋巴细胞38A1D培养CSFV比用PK-15细胞系培养滴度高[6]。根据是否使培养细胞产生CPE,可将BVDV分为使培养细胞产生CPE的CP型BVDV和不使细胞产生CPE的nCP型BVDV。Hewicher-Trautwein等用BVDV感染绵羊胎脑细胞培养物,发现CP型BVDV与nCP型BVDV的细胞嗜性相同,主要在脑培养物中的神经元、星形细胞及含纤黏连蛋白的细胞中增殖。CP型BVDV还可使部分细胞死亡,造成培养物中细胞类型减少。感染CSFV的猪后期表现出神经系统症状,推测CSFV与BVDV一样具有嗜神经性[7]。CSFV在神经细胞中增殖,损伤了神经细胞,从而影响了神经系统的功能,使瘟猪表现出运动失调等症状。尸体剖检证实了CSFV在猪脑神经元及胶质细胞中存在[8]。

  瘟病毒属病毒对不同宿主的神经系统及免疫系统的细胞有嗜性,这种细胞嗜性有可能是导致宿主迅速发病、死亡的重要原因之一。研究CSFV等瘟病毒属病毒对体外培养的不同种类细胞的嗜性及对宿主细胞的影响,对了解CSFV致病机制及其防控至关重要。

  值得一提的是,为了研究CSFV的分子生物学和免疫学特征,提高其病毒滴度是非常关键的。用Roux培养瓶或转瓶在猪肾细胞PK-15上培养CSFV是应用最为广泛的方法,其滴度一般在106~107TCID50/mL。而应用微载体细胞培养技术,至少可将CSFV的滴度提高10倍。这种微载体(Cytodex3R,Pharmacia)是一种多孔微珠,将其加于悬浮细胞培养物中,在37 ℃、体积分数为5% CO2培养箱中摇动培养时,细胞即可贴附在微载体上生长。由于减少了培养基用量,同时扩大了细胞的培养量,从而使CSFV的滴度比一般贴壁培养的毒价提高了1.5个滴度,且这种微载体经处理后仍可继续使用,因此,微载体细胞培养也是提高CSFV滴度的一个比较好的方法[8]

  3.3 CSFV在体内的复制过程

  CSFV感染宿主细胞后,在宿主细胞中复制完成感染过程。CSFV吸附在细胞表面,并通过其囊膜糖蛋白Erns和E2细胞膜的融合或经受体介导的胞饮作用进入感染细胞[9] 。在体外培养CSFV感染的猪肾细胞时,在细胞上传代引起Erns蛋白C端Ser476突变为Arg残基,这一改变使得不依赖硫酸乙酰肝素(HS)的病毒变为利用HS作为Erns受体的病毒,CSFV通过其Erns和细胞表面的HS的相互作用而完成最初的结合[9]。病毒进入细胞及随后其RNA从核衣壳中释放的机制尚不清楚。由于CSFV基因组RNA只有一个开放阅读框,因此其表达产物是一个3 898氨基酸残基的多聚蛋白(polyprotein),而后再经病毒自身的或细胞的蛋白酶作用,将其裂解成数个结构蛋白与非结构蛋白(图2)。

 CSFV开放阅读框编码的第一个蛋白是分子质量为23 ku的多肽p23,以前曾认为它就是病毒核衣壳蛋白,但实际上核衣壳蛋白是一个位于p23和第一个病毒蛋白E0之间的14 ku蛋白P14。p23本身具有蛋白水解酶活性,可使P14与p23之间迅速断裂,离开多聚蛋白[9-10]。

  E2下游区翻译产物的研究比较少,主要是非结构蛋白的表达。在1 030位~1 310位氨基酸残基之间有一70个氨基酸组成的疏水区域,Collett认为此疏水多肽可能与内质网膜的结合有关[11]。对瘟病毒属中牛病毒性腹泻病毒(Bovine viral diarrhoea virus,BVDV)和边界病毒(Border disease virus,BDV)的研究发现,非结构蛋白p125在表达后即被加工成p54和p80。p80在瘟病毒间呈极高同源性,p80属于以Eif-4a为代表的类解螺旋酶(helicase like)超家族,并形成丝氨酸蛋白结构域的一部分,因而p80是一个双功能蛋白,但尚未发现CSFV p125被加工成p80。在ORF3′端的表达产物中存在一段Gly-Asp-Asp序列,可能代表着病毒RNA依赖的RNA聚合酶的一部分[11]。

  衣壳蛋白在合成后几分钟内即与基因组RNA相结合,包装进入核衣壳。E2-E2、E2-E0及E2-E1之间由二硫键(或个别较强的非共价键)连接成同型或异型二聚物,形成病毒的囊膜抗原。因此,二聚化可能在病毒装配中非常重要[9]。E2、E1的C端有疏水性氨基酸残基组成的结构,可作为跨膜结构域,使之镶嵌于CSFV囊膜脂双层中,E0无此疏水结构,它与病毒粒子的联系尚不清楚,可能与E2形成异源二聚体,但这种联系不如E1和E2那样牢固[12]。外膜蛋白糖基化后,通过内质网和高尔基体搬运到胞浆膜,成为一种跨膜蛋白。应用电镜超薄切片技术对感染细胞中病毒的形态发生进行观察的结果显示,CSFV在胞内增殖的主要部位是有丰富膜系统的细胞核周围。成熟的病毒粒子多见于细胞质中充满无定型基质的膜囊中,有时可观察到膜囊在质膜处的开口以及周围的无定型基质和其中的成熟病毒,提示CSFV可能通过这一特殊的结构向外释放,且多数释放的病毒依然吸附在无定型基质中。Gray等(1987)研究发现,在BVDV感染的细胞表面无病毒蛋白,这一现象推测BVDV是在宿主细胞内的一种光滑小膜泡中装配后,聚集在一起,再经胞吐作用,将成熟病毒释放出来。CSFV是否也以类似方式装配和释放还不清楚,但基于瘟病毒种间的相似性,可以设想CSFV也是由细胞表面以芽生方式释放。

  CSFV与宿主细胞相互作用机制的研究对该病的预防和控制具有重要的意义。随着生物技术的进一步提高,许多尚不清楚的方面如病毒致病机制、宿主抗病毒机理等都将逐步得到揭示,并在此基础上开发和研制高效、安全的新型疫苗,在该病的防控中发挥重要作用。

文章编辑:现代畜牧网     
进入社区】【进入专栏】【推荐朋友】【收藏此页】【 】【打印此文】【关闭窗口
 相关信息
出栏增加!供需皆增 9月生猪屠宰量环比增加2024/9/27 23:26:05
大数据如何“养”猪?走进重庆荣昌“国家级生猪大数据中心”2024/9/27 23:25:01
牧原股份发布大额回购计划,生猪行业迎来周期向上拐点2024/9/27 23:24:31
新五丰参加半年度沪市生猪行业专场集体业绩说明会:生猪出栏增速领先,全面提升核心竞2024/9/27 23:23:52
ST天邦:目前公司的零售产品以中高端猪肉制品为主,开发了黑猪肉系列、黑松露系列等2024/9/27 23:23:21
生猪行业焕发新生机 业绩、养殖与供应链全面提升|上市公司高质量发展·行业集中路演2024/9/27 23:22:59
 发表评论   (当前没有登录 [点击登录])
  
信息发布注意事项:
  为维护网上公共秩序和社会稳定,请您自觉遵守以下条款:
  一、不得利用本站危害国家安全、泄露国家秘密,不得侵犯国家社会集体的和公民的合法权益,不得利用本站制作、复制和传播下列信息:[查看详细]
  二、互相尊重,对自己的言论和行为负责。
  三、本网站不允许发布以下信息,网站编辑有权直接删除:[查看详细]
  四、本网站有权删除或锁定违反以上条款的会员账号以及该账号发布的所有信息。对情节恶劣的,本网将向相关机构举报及追究其法律责任!
  五、对于违反上述条款的,本网将对该会员账号永久封禁。由此给该会员带来的损失由其全部承担!
声明:本网刊登的文章仅代表作者个人观点,文章内容仅供参考,并不构成投资建议,据此操作,风险自担。如果转载文章涉嫌侵犯您的著作权,或者转载出处出现错误,请及时联系文章编辑进行修正,电话:010-65283357。本网原创文章,转载请注明出处及作者。感谢您的支持和理解!

您可能感兴趣的产品更多>>

版权所有 现代畜牧网 Copyright©2000-2023 cvonet.com All Rights Reserved 京ICP备10042659号